A New Trap for Singlet Oxygen in Aqueous Solution

By **MARIA BOTSIVALI** and **DENNIS** F. **EVANS*** *(Inorganic Chemistry Laboratories, Imperial College, London* SW7 **2AY)**

Summary The sodium and caesium salts of anthracene-9,lO-bisethanesulphonic acid are soluble in water, and readily react with singlet oxygen without appreciable quenching to give the stable endoperoxide; kinetic parameters are reported and it is shown that in the decomposition **of** peroxymonophthalic acid at pH **8.2,** $69 \pm 4\%$ of the oxygen produced is in the singlet state.

J.C.S. **CHEM. COMM., 1979 1116**

THERE has been considerable interest in systems which may produce singlet (Δg) oxygen in aqueous solution, including some of biological importance.^{1,2} The common substrates or traps such as **1,3-diphenylisobenzofuran,** tetraphenylcyclopentadienone, and 9,lO-dimethylanthracene are virtually insoluble in water. 2,5-Dimethylfuran is soluble in water, and is very reactive towards singlet oxygen,³ but has a number of disadvantages. It is volatile, the electronic absorption maximum lies at an inconveniently short wavelength (215 nm), and it is difficult to characterise the reaction products.¹ Accordingly, we propose the new compound AES **(l),** the sodium (or caesium) salt of anthra**cene-9,lO-bisethanesulphonic** acid. AES is readily soluble in water and in buffer solutions, is stable over a wide pH range, and, under normal conditions, is not affected by oxidants such as OCl⁻ and H_2O_2 . Its concentration can be monitored from the strong absorption in the near u.v. region $(\epsilon_{399}$ 1.26 × 10⁴). It reacts with ¹O₂ (from Rose Bengal photosensitization or H_2O_2 and OCl-) to give as sole detectable product the endoperoxide, which does not absorb above **320** nm and can be characterised by t.1.c. and polarography .

FIGURE. Plot of $1/E$ against $1/[\text{AES}]_{av}$, for the reaction of H_2O_2 and OCl⁻ at pH *ca*. 10 in the presence of AES: H_2O (O), D_2O (\bigcirc).

When ${}^{1}O_{2}$ is produced in the presence of substrate A, it may follow one of three main pathways: quenching by solvent **(l),** quenching by A **(2),** or reaction **(3).** Thus,

$$
{}^{1}O_{2} + S \xrightarrow{\text{ } R_{4}} {}^{3}O_{2} + S \tag{1}
$$

$$
{}^{1}O_{2} + A \xrightarrow{k_{q}} {}^{3}O_{2} + A
$$
 (2)

$$
{}^{1}O_{2} + A \xrightarrow{k_{r}} AO_{2}
$$
 (3)
equation (4) may be derived, where the efficiency *E* is the

$$
{}^{1}\text{O}_{2} + \text{A} \xrightarrow{k_{\text{r}}} \text{AO}_{2} \tag{3}
$$

$$
1/E = (k_{\mathbf{r}} + k_{\mathbf{q}})/k_{\mathbf{r}} + (k_{\mathbf{d}}/k_{\mathbf{r}})(1/[\mathbf{A}])
$$
 (4)

fraction of singlet oxygen which reacts to give $AO₂$. The lifetime of ¹O₂ in D₂O is *ca*. 10 times that in H_2O .⁴ Hence, under otherwise identical conditions, equations (5) and **(6)** may be derived, and equation **(7)** follows from these.

$$
k_d(H_2O)/k_r[A] = 1/E(H_2O) - (k_r + k_q)/k_r
$$
 (5)

$$
1/E(D_2O) = (k_r + k_q)/k_r + 0.1 k_d(H_2O)/(k_r[A])
$$
 (6)

$$
E(D_2O) = E(H_2O)/[0.1 + 0.9E(H_2O)(1 + k_q/k_r)]
$$
 (7)

The Figure shows a plot of $1/E$ (based on the total O_2) produced) against $1/[\text{AES}]_{av}$ for the reaction of H_2O_2 and OCl⁻ in the presence of AES at various concentrations. In the measurement of E , a change in the $[AES]$ term is necessarily involved. However, provided this change is $\leq 20\%$, [AES]_{av.} can be taken as the mean of the initial and final concentrations without serious error. The straight line has a slope β of 4.34×10^{-3} M, and an intercept of 1.02. The latter value shows that quenching of ${}^{1}O_{2}$ by AES is negligible, and also that the yield of ${}^{1}O_{2}$ from the H_2O_2 -OCl⁻ reaction is very close to 100%, in agreement with the recent work of Held, Halker, and Hurst.¹ From the known value of k_d (5 \times 10⁵ s⁻¹),⁴ k_r for the reaction of AES with ${}^{1}O_{2}$ is 1.15×10^{8} dm³ mol⁻¹ s⁻¹.

 E was also measured at two AES concentration in D_2O . The observed values were considerably higher than in H_2O (Figure), and were in reasonable agreement with equation (7) [AES: 1.46×10^{-3} M, $E(D_2O)$ obs. 0.69_1 , calc. 0.75_9 ; 4.3×10^{-3} M, $E(D_2O)$ obs. 0.87_2 , calc. 0.89_2].

The utility of AES was tested in a study of the decomposition of peroxy acids in aqueous solution. The observed reaction^{5} is shown in reaction (8) .

McKeown and Waters⁶ have presented qualitative evidence for the production of ${}^{1}O_{2}$ in the decomposition of di-isoperoxyphthalic acid in ethanol at 'pH' 8-9, using 9-methyl- 10-phenylanthracene as the substrate.

SCHEME. Reagents: i, BuⁿLi, oxiran; ii, [(PhO)₃PMe]I, dimethylformamide; iii, $(Et₄N)₂SO₃$, dioxan-water.

AES endoperoxide was the only product that could be detected. Analysis of the results, in both H₂O and D₂O, sparingly soluble tetraphenylphosphonium salt. showed that $69 \pm 4\%$ of the oxygen produced by reaction (8) was in the singlet state.

The rate of decomposition of peroxymonophthalic acid at δ (D₂O) 3.08 (4H, m), 3.61 (4H, m), 7.61 (4H, m), 8.12 pH **8.2** was not affected by the presence **of** AES, and the **(4H,** m). The sodium and caesium salts were hygroscopic,

AES was prepared as shown in the Scheme; ¹H n.m.r. *(Received, 6th August 1979; Com. 858.)*

¹A. M. Held, D. J. Halker, and J. K. Hurst, *J. Amer. Chem.* SOC., **1978, 100, 5732.**

² A. P. Schaap, A. L. Thayer, G. B. Faler, K. Goda, and T. Kimura, *J. Amer. Chem. Soc.*, 1974, 96, 4026; J. W. Peters, P. J. Bekowies, A. M. Winer, and J. N. Pitts, *ibid.*, 1975, 97, 3299; E. W. Kellog and I. Fridovic

E. McKeown **and** W. **A.** Waters, *J. Chem. SOC. (B),* **1966, 1040.**